Data Analytics Platform

Built a comprehensive analytics platform processing 10M+ records daily, providing real-time insights and predictive modeling capabilities

The Overview

The Problem/Goal

The organization was struggling with data silos, inconsistent reporting, and lack of real-time insights across multiple business units. Manual data processing was time-consuming and error-prone, leading to delayed decision-making and missed opportunities for optimization.

The goal was to build a centralized data analytics platform that could process large volumes of data in real-time, provide interactive dashboards for business users, and enable predictive analytics to drive strategic decision-making across the organization.

My Role & Technologies Used

My Role

Lead Data Engineer & Analytics Architect

  • • Data pipeline design and ETL development
  • • Database architecture and optimization
  • • API development for data access
  • • Dashboard creation and visualization
  • • Performance tuning and monitoring

Tech Stack

Data Processing

Apache Spark & Python

Chosen for distributed computing capabilities and excellent data processing libraries. Spark enables processing of large datasets efficiently across multiple nodes.

Database

PostgreSQL & Redis

PostgreSQL for structured data storage with ACID compliance, Redis for caching and real-time data access to improve query performance.

Visualization

Tableau & D3.js

Tableau for business user dashboards, D3.js for custom interactive visualizations and real-time data updates.

Infrastructure

AWS EMR & Docker

AWS EMR for scalable Spark clusters, Docker for containerized deployment ensuring consistency across environments.

The Process & Challenges

Challenge 1: Processing Large-Scale Data in Real-Time

The platform needed to process 10M+ records daily from multiple sources while providing real-time analytics. Traditional batch processing approaches were too slow for business requirements.

Solution Approach

I implemented a hybrid streaming and batch processing architecture using Apache Spark Structured Streaming with micro-batch processing for near real-time capabilities.

# Real-time data processing pipeline
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *

def create_streaming_pipeline():
    spark = SparkSession.builder \
        .appName("RealTimeAnalytics") \
        .config("spark.sql.streaming.checkpointLocation", "/checkpoint") \
        .getOrCreate()
    
    # Read streaming data from Kafka
    df = spark.readStream \
        .format("kafka") \
        .option("kafka.bootstrap.servers", "localhost:9092") \
        .option("subscribe", "analytics-events") \
        .load()
    
    # Parse JSON data
    schema = StructType([
        StructField("user_id", StringType()),
        StructField("event_type", StringType()),
        StructField("timestamp", TimestampType()),
        StructField("value", DoubleType())
    ])
    
    parsed_df = df.select(from_json(col("value").cast("string"), schema).alias("data")) \
        .select("data.*")
    
    # Real-time aggregations
    windowed_agg = parsed_df \
        .withWatermark("timestamp", "10 minutes") \
        .groupBy(window("timestamp", "5 minutes"), "event_type") \
        .agg(
            count("*").alias("event_count"),
            sum("value").alias("total_value"),
            avg("value").alias("avg_value")
        )
    
    # Write to database
    query = windowed_agg.writeStream \
        .outputMode("append") \
        .format("jdbc") \
        .option("url", "jdbc:postgresql://localhost:5432/analytics") \
        .option("dbtable", "real_time_metrics") \
        .option("user", "analytics_user") \
        .option("password", "password") \
        .start()
    
    return query

This implementation reduced data processing time from hours to minutes and enabled real-time dashboard updates with sub-5-minute latency.

Challenge 2: Building Interactive Dashboards with Real-Time Updates

Business users needed interactive dashboards that could display real-time data with drill-down capabilities and custom filtering options. Static reports were insufficient for dynamic decision-making.

Solution Approach

I developed a hybrid approach combining Tableau for business dashboards with custom D3.js visualizations for real-time data and interactive features.

// Real-time dashboard with WebSocket updates
class RealTimeDashboard {
    constructor() {
        this.socket = new WebSocket('ws://localhost:8080/analytics');
        this.charts = {};
        this.init();
    }
    
    init() {
        this.socket.onmessage = (event) => {
            const data = JSON.parse(event.data);
            this.updateCharts(data);
        };
        
        this.setupCharts();
    }
    
    setupCharts() {
        // Setup D3.js charts
        this.charts.metrics = d3.select('#metrics-chart')
            .append('svg')
            .attr('width', 800)
            .attr('height', 400);
            
        this.charts.trends = d3.select('#trends-chart')
            .append('svg')
            .attr('width', 800)
            .attr('height', 300);
    }
    
    updateCharts(data) {
        // Update metrics chart
        const metricsData = data.metrics.map(d => ({
            name: d.event_type,
            value: d.event_count,
            color: this.getColor(d.event_type)
        }));
        
        this.updateBarChart(this.charts.metrics, metricsData);
        
        // Update trends chart
        const trendsData = data.trends.map(d => ({
            date: new Date(d.timestamp),
            value: d.total_value
        }));
        
        this.updateLineChart(this.charts.trends, trendsData);
    }
    
    updateBarChart(chart, data) {
        const bars = chart.selectAll('.bar')
            .data(data, d => d.name);
            
        bars.enter()
            .append('rect')
            .attr('class', 'bar')
            .attr('x', (d, i) => i * 100)
            .attr('y', d => 400 - d.value * 2)
            .attr('width', 80)
            .attr('height', d => d.value * 2)
            .attr('fill', d => d.color);
            
        bars.transition()
            .duration(500)
            .attr('y', d => 400 - d.value * 2)
            .attr('height', d => d.value * 2);
    }
}

The interactive dashboard provided real-time updates with sub-30-second refresh rates and enabled users to drill down into specific data points for detailed analysis.

Results & Impact

Processing Speed

90%

Faster data processing

Decision Time

75%

Reduction in decision time

The data analytics platform successfully processed over 10M records daily with sub-5-minute latency, enabling real-time business intelligence and data-driven decision making across the organization.

Key achievements included 90% faster data processing, 75% reduction in decision-making time, and establishment of a scalable foundation for future analytics initiatives.

Lessons Learned & Next Steps

Key Learnings

  • Data Quality is Critical: Implementing data validation early prevented downstream issues
  • Scalability Planning: Designing for future growth from the start saved major rework
  • User Feedback: Regular stakeholder input shaped the most useful features
  • Performance Monitoring: Real-time monitoring helped identify bottlenecks quickly
  • Documentation: Comprehensive documentation enabled smooth handover and maintenance

Future Enhancements

  • Machine Learning Integration: Adding predictive analytics and anomaly detection
  • Advanced Visualization: Implementing 3D charts and geospatial mapping
  • Natural Language Processing: Adding voice queries and automated reporting
  • Edge Computing: Extending analytics to IoT devices and edge locations
  • Data Governance: Implementing comprehensive data lineage and governance tools